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Abstract: In this paper, we introduce the concept of second order partial
derivatives in the extended sense for nonconvex functions and prove a formula
computing the extended Hessian in terms of the second order partial derivatives
in the extended sense. We show that the sum, difference, product, and quotient
of functions that are twice differentiable at a point are functions that are twice
differentiable at that point in the extended sense. We also show why the coun-
terpart of the second order differentiability in the extended sense on R™ does not
appear in variational analysis.

Keywords: Twice differentiable in the extended sense; second order partial
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1 Introduction

Classical second order differentiability is an important property from both theoretical
and practical viewpoints. However, since many functions from optimization and its appli-
cations do not have this property, various generalized second order differentiation notions
have been proposed and studied extensively in the literature ([2], [5]).

In 1998, Rockafellar and Wets [5] introduced the notion of second order differentiability
of a function in the extended sense by removing the differentiability in some negligible
subsets of a neighborhood of the considered point from the definition of classical second
order differentiability. Although the extended second order differentiability is weaker than
the classical counterpart, it still ensures the function of having a quadratic expansion. A
function f : R® — R is twice differentiable at Z in the extended sense if and only if f is
finite and locally lower semicontinuous at Z and the subgradient mapping 0f : R™ = R" is
differentiable at z. Other nice property of such functions can be found in [5, Chapter 13].

Our goal is to develop a system of computational rules for extended Hessian. We have
achieved results:

The first result, we have established the extended Hessian expression formula through
extended second order partial derivatives.

The second result, we have established the extended Hessian expression formula of the
sum, difference, product, and quotient functions of two functions which are twice differen-
tiable at the same point in the extended sense.

Together with the differentiability at a point, the differentiability on R is also a re-
markable property from both theoretical and practical viewpoints. So it is curious why the
counterpart of the extended second order differentiability does not appear in variational
analysis. That is another interesting result we obtained.

D Email:hatuanhuyhoang@gmail.com

7



Ha Anh Tuan / Some results on second order differentiability in the extended sense of functions

2 Preliminaries

This section recalls some notions and their properties from variational analysis (2], [5]),
which are used in the sequel. Let 2 be a subset of the Euclidean space R™ and & € ). Recall
[2] that the regular normal cone to Q at & € € is the set Nq(Z) given by

No(z):=4ve R”! limsup@’aci__w> <0,,
P e =2l

where z 5 7 means that z — 7 with z € Q; the (Mordukhovich) limiting/basic normal

cone to Q at T € § is the set No(z) defined by

Na(z) := {v € R" | there exists zj, 8 Z, vy, € No(wy,) with vy — v},

which was introduced by Mordukhovich [3] in an equivalent form. If Z ¢ €, one puts
No(z) = 0 by convention. Let f : R” — R := RU{cc} and let Z € dom f := {z eR"| f(z) <
oo}. Recall [2] that the limiting subdifferential (also known as the Mordukhovich/basic
subdifferential) of f at Z is given by

of(z) = {v eR"|(v,—1) € Nepif(j,g)},

where epi f := {(z,7) € R" x R| r > ¢(z)} is the epigraph of f.
One says f is Lipschitz on U C R™ if there exists a real number £ > 0 such that

|f(z) — f(u)] < kllz —ul for all x,u € D;

if, in addition, U is a neighbourhood of Z, then f is said to be locally Lipschitz around z. If
f is locally Lipschitz around z, the Clarke subddiferential of f at Z is defined as the convex
hull of df(Z), and will be denoted by 9! f(Z) in the sequel.

Recall [5] that f is twice differentiable at T (in the classical sense) if it is differentiable on
a neighborhood U of Z and there exists a n x n matrix H such that

o V@] - [Vi@) - H )

25 |l — 2|

where Vf(Z) is written as a row vector. In this case, the matrix H is necessarily unique,
called the Hessian (matrix) of f at Z, and is denoted by V2f (7).

Definition 2.1. Let a function f : R® — R. We say that

(i) f is twice differentiable at = (Z1,...,%i,...,Ty) in the extended sense if it is
differentiable at Z, and there exists a n X n matrix A, a neighborhood U of Z and a subset
D of U with u(U\D) = 0 such that f is Lipschitz on U, differentiable on D, and

i V1@ = [Vi@)]" - A - 2)

+Bz [ — ]

=0,
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where p denotes the Lebesgue measure on R™. This matrix A, necessarily unique, is then
called the Hesian (matrix) of f at 7 in the extended sense and is likewise denoted by V2 f(Z).

(ii) f is said that has second order partial derivatives for x; at T in the extended sense
(1=1,2,...,n) if f has partial derivatives g—f(si), (j=1,2,...,n) and

%‘
of = - of /= _ _
02 f @ = lim anj(:Ul,...,:L‘i,...,xn)—87’;(331,...,331-,...,33”)
O0x;0x; =%z, T — Xy

exists (j = 1,2,...,n). Where D; is a subset of U; C R satisfies u(U; \ D;) = 0 for some
neighborhood U; of Z;.

From definition, it is easy to see that if f is twice differentiable at z then it is twice
differentiable at Z in the extended sense, and the Hessian and the extended Hessian coincide.

Example 2.2. The function f: R — R given by

z* if 2> 1,
2n+1)(2n2+2n+1 1 1 ] L
fla) = Crthon ity + by — & ifoe [ 1), n=12..
0 if x =0,
f(=z) if x <0,

is twice differentiable at £ = 0 in the extended sense, but it is not twice differentiable at
in the classical sense. Indeed, we see that f is differentiable at z, and

4a” if x> 1,
2n+1)(2n2+2n+1 .
V(2 = ( n?g((n+1)3 ) ifxe (%—l—l’ %), n=1,2,..
0 if x =0,
—Vf(—x) if ze€(-00,0)\{-2%neN}.

Put U = (—1,1), D = (-=1,1) \ {£| n € Z*}, and A = 0. Then u(U\D) = 0, f is Lipschitz
on U with constant k = 1, and differentiable on D, where p is the Lebesgue measure on R.

Furthermore, for each x € (n%_l, %) with n € N* we have
T T
(Vi) ~[vi@] —A@-2)|  (@nt1)@n2+2n+1)
l=—2] — n3(nt1)3a]

< (2n+1)(2n2+2n+1)
=~ n3(n+1)2
— 0 asn — oo.

This implies
i [VF@]" = [V1@)]" ~ A~ )

+Bz [ — ]

Therefore, f is twice differentiable at  in the extended sense. On the other hand, since f
is not differentiable at each point % with n € Z*. Hence, f is not twice differentiable at
in the classical sense. This tells us that the extended twice differentiability does not imply
the classical twice differentiability.

=0.
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Remark 2.3. The concept twice differentiable of function f : R™ — R in the extended
sense stated in Definition 2.1(i) coincides with the twice differentiable of function f in the
extended sense stated in [5, Definition 13.1 (b)]. However, with this concept statement
in [5, Definition 13.1 (b)], because Dy N Dy can not be the domain of V(f + g), V(f.g)
and V(g), where Dy and D, are the domains of V(f) and V(g), respectively. This makes
difficulty to construct mathematical operations for functions that are twice differentiable
in the extended sense.

3 Main results

In this section, we present the results obtained on the calculation rule for the extended
Hessian. Besides that, we also prove why the counterpart of the second order differentiability
in the extended sense on R™ does not appear in variational analysis.

Proposition 3.1. Suppose that the function f : R® — R is a twice differentiable at T in
the extended sense. Then

a2f n,n
V2f(z) = [ G } . 1
1@ = [Gaar @] 1)
Proof. Since f is twice differentiable at z in the extended sense, from Definition 2.1(ii) f
has second order partial derivatives at Z in the extended sense. Suppose that

n,n

V2f(z) = [aij}

i.j=1

we have
p V@] - [Vi@] - V@ —7)

2 — |

932>:Y:
with D = Dy x ... x D, is a subset of U satisfies u(U \ D) = 0, for some neighborhood
U:=U; X...xU, of z. Therefore, u(U; \ D;) =0 for all i = 1,...,n and we get

n,n
lé] le] lé] = e] = _ _
(@t @) - (2@ g @) - [am} e Erean )T
0 = lim - LI=
D lz—z|l
. (%(z)f;Tfl(f)fall(xl711)7-~*an1(xn7jn)au~yaazfn (I)*aaszn(i)fam(x17i1)7...7ann(xn7§:n))
= lim _
o llz—z|l
xX X
(@)= 2L (@) —a11 (@1 ~F1) .. —an1 (@n —Tn) i (2) = g (&) —a1n (@1-F1) —.—ann (@0 —Tn)
_ hm 9y Baq 11(T1 n n n Dam Dom 1n(x1 1)—e.-—ann(Tn n )
D lz—2 T lz—2] ’
Tr—T
Hence, for each ¢ = 1,...,n we choose © = (Z1,...%i—1,%i, Tit1...,Tn), for each j =
1,...,n we have
0 of (= _
y (@) = 5L(2) - aji(ai — 3) 0
im =
D, T — T
B i — @
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Combining this with Definition 2.1 (ii), we get

82
a;j = Gaczaij(j) foralli,j=1,...,n.
This shows that 5
2 prn . nn
V@) = [81:1-855]- (x)L,jzl’
The proof is complete. O

Representation (1) was mentioned by Rockafellar in his paper [4] for convex functions
without proof.

Theorem 3.2. Let f,g: R" — R and T € R™. Assume that f,qg are twice differentiable at
Z wn the extended sense. Then

(i) f + g is twice differentiable at T in the extended sense, with the extended Hessian
matriz given by V2(f + g)(z) := V2(f)(z) + V3(g)(2).

(ii) af is twice differentiable at T in the extended sense, where a € R is a given real
constant, with the extended Hessian matriz given by V2(af)(z) := aV2(f)(Z).

(iii) f.g is twice differentiable at T in the extended sense, with the extended Hessian ma-
triz given by V2(f.9)(z) := g(z)V2f(z)+ [Vf(i)]T.Vg(a_cH— [Vg(:i)]T.Vf(a_c)—i—f(:f)VQQ(E).

(iv) If in addition that g(z) # 0 then g is also twice differentiable at T in the extended
sense, with the Hessian matrix given by

V(L) = e e C))

fo V2@ [VI@)]) . Ve@ [Ve@] Vi@ L, 9(@)V3(E) - 2[Ve(@)] Vo(z)
g 9(z) l9(z)]? l9(2)]? '

Proof. Since f, g are twice differentiable at Z in the extended sense. We have (U \ D) =
0, w(U \ Dy) = 0 for some neighborhood U of z, where p is the Lebesgue measure on R"™.
Hence,

0 < ufU\ (Dy 1 D,)] = ul(U\ Dy U (U D,))] < w(U\ Dy) + (U Dy) =0

which implies ,u[U\ (Df N Dg) = 0. Since f, g are locally Lipschitz at z, there exist € > 0,
k1 > 0, k9 > 0 such that
|f(z1) = fla2)] < ko1 — o]

lg(z1) — g(z2)| < k2|1 — 22],
for all z1,x9 € B¢(z). Put
my = min{[f(z)|| z € B(z)}, M1 = max{|f(z)|| z € B(7)},
mg = min{|g(z)|| € Be(2)}, M2 =max{[g(z)|| = € B(7)}.

(i) f + g is twice differentiable at Z in the extended sense:
Indeed, since f,g are differentiable at = then f + ¢ is also differentiable at z. For any
x1,z2 € B(Z), we have

| (1) + g(x1) — (f(22) + g(x2))| < |f(21) = f(@2)|+|g(x1) — g(22)| < (k1 +k2) [z1 — @2].
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This infers that f + ¢ is Lipschitz continuous on B.(Z). On the other hand, we have

(V@) +[ve@)] - ( (V@] +[vo@)] T) - (v2f<o-c>+v2g<z>) (2-3)
To—aT
[vi@] - [vr@] -v2 @) a-2) N H [vo)] - [vo@] " -v2(@) (e—2)
To=a] To=a]

DinDg _
—0asx — .

This implies that
. (VU +9@]") = (VU +9@)]") = (V@) + V2(@) ) (@ - 2)

oy, fe—al

0 <

<

=0.

In other words V f + Vg is differentiable at  relative to Dy N Dy. So, we show that f + g
is differentiable at z, Lipschitz on B.(Z) and V(f + g¢) is differentiable at & relative to
Dy N Dy. It shows that f + g is twice differentiable at Z in the extended sense, with its
extended Hessian matrix is V2f(z) + V2g(7).

(ii) af is twice differentiable at Z in the extended sense:
Indeed, since f is differentiable at & then af is also differentiable at . For any x1,x9 €
B.(Z), we have

af(21) — af (x2)| < laf [f(21) — f(22)] < Jol £1 |21 — 2.
This infers that «f is Lipschitz continuous on U = B¢(Z). On the other hand, we have

o[vi@)] —alvi@)] a2 @) @-2) [vi@)] - [vi@] -V 4@ @-2)

lim =3 = o lim =] =0.
Dy Dy
T—=T T—=T

Therefore, af is twice differentiable at Z in the extended sense, with its extended Hessian
matrix is aV2f(z).

(iii) f.g is twice differentiable at Z in the extended sense:
Indeed, since f, g are differentiable at Z, f.g is also differentiable at Z. For any z1, 2 € B.(Z),
we have

[f(21).g(x1) = fl22).9(22)| < |f(21).9(21) = f21).9(22)| + |f(21).9(22) — f(22)-9(22)|

<|
= |f(x1)]|g(@1) — g(z2)| + |g(z2)| | f(21) — f(z2)]
< (Ml.ﬁg + leﬁ) |JI1 — 1'2’ .

This shows that f.g is Lipschitz on U = B.(z). Moreover, for
A=g@)V (@) + [VI@)] Vo(@) + [Vo@)]" Vi@ + f(@) V()
we have

1@).[vo@)] +9@) [vi@)] " -1@).[ve@)] 9@ [vi@)]" -A@-5)

[l 2|l

5@ (Vo] @[] - | [vo@] " vr@rs@vEe@] oo 2
- 2=z

9@ [v1@)] 9@ [vr@)] - [[Vf(f)} T.Vg(z>+g<f>v2f<o-:)} (2—2)

llz—2|l

+
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On the other hand,

1@ [vo@)] ~r@ [ve@)] - [[Vg@)} T-Vf(i)+f(i)v2g(f)} (2—3)
[o=3
(Vo) [#@)-f@- Vi@ @-5) \ ([vo)] " [ve@]") Vi@ -2
el ==l (3)
f(i)[[Vg(r)] ~[vo@] —v2g<z=><m—:z>}
_|_

llz—z||

DfnDg _
—0asx — 7.

Similarly, we also have

9@ [vi@)] —g@[vi@)] - [[w@] " V(@) +9@) V(@) | (o-7)
lz=2] (4)

DiNDy _
—0asx — .

From (2), (3) and (4) it follows

b J@ V@] + 9@ [Vi@)] - 1@ [Vo@)]" - 9@ [VI@)]" - A - 7)

A |z — ||

=0.

Therefore, f.g is twice differentiable at Z in the extended sense, with the extended Hessian

matrix is A = g(2)V2f(z) + [V1(@)]".Vg(@) + [Vo(@)] . V(@) + f(2)V2(2).

(iv) 5 is twice differentiable at Z in the extended sense. Firstly, we prove that é

is twice differentiable at & in the extended sense, with the extended Hessian matrix is

9(2)V2g(2)-2[Vg(2)]" Vg(z)
[9(2)]3

that % is also differentiable at z. Without loss of generality, assume g(z) # 0 for all

x € Be(Z). Then we have mgy > 0. For any z1,z2 € B(Z), we have

. Indeed, since g is differentiable at z and g(z) # 0, we have known

1 1

_g(@1) — g(=2)]
’9(901) g(x2) =

ey |
= S —5 |1 — X2 .
lg(x1)] - [g(z2)] — m3

This shows that % is Lipschitz on B.(Z). On the other hand, for B := 9(2)V?9(2)-2[Vg(z)]" Vg(2)

[9(@)]3
we have
T T
[Vg(z)] [Vg(i)] _
L@l e Ble-?)
To—7] .

@B [Ve@)] —9@@)12[Ve@] —9@s(@)2V2g(@)(@—2)+2lg(@)2[Vg(@)T Vy()(z—7)
= . . B@PL@ Pl
1 [Vg(x)] —[Vg(i)] ~V?2g(z)(z—2) _2[Vg(5c)] g(2)—g(2)—Vg(Z)(x—7)
= LEr To—a]] G@F lz—zl]

+persEr S [s@ PR [Ve@)] " + g@)g(@) [Va(@)]" - 2g(@)F[Ve(@)]"]

D
—0asz = ZT.
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Which implies that

Vo] [ve@] Ble - )
2 ~1]2
0 L@ o
by o — 7

Thus —[g(vﬁ is differentiable at Z relative to D,. Therefore, % is twice differentiable at z
in the extended sense and its extended Hessian is —B.
Finally, since f, % are twice differentiable at Z in the extended sense, by (iii) we get g is

twice differentiable at Z in the extended sense, with the Hessian matrix is VQ(g) = % —
5| Ve 5" z z)V23g(z)— 5] Vo
[Vf([g)(]i)]'zvg( L [vg([;(}j)jgvf( ) f(f).g( Voo )[;g]i( )} vl ). The proof is complete. O

Lemma 3.3. ([1, Theorem 2.3.7]). Let f be a Lipschitz function on an open subset of R™
containing the line segment [x,y] with x,y € R™, x # y. Then, there exists ¢ € (x,y) such
that

)~ f@) € (07 f(e)y —=). (5)

Lemma 3.4. ([1, Theorem 2.5.1]). Let f be Lipschitz on a neighborhood U of T € R"™, and
differentiable on a subset D of U with p(U\D) = 0, where p is the Lebesgue measure on R™.
Then, one has

o° f(z) = co{ lim Vf(xp)| zx B % and lim Vf(zk) ea:z'sts}.
n—r00 k—ro0

From definitions of the second order differentiability at a point in the extended sense,
it is natural to define the second order differentiability at every point in the extended sense
as follows: A function f : R®™ — R is said to be twice differentiable on R™ in the extended
sense if it is twice differentiable at every point x € R™ in the extended sense.

In contrast to the extended second order differentiability, it turns out that the extended
second order differentiability coincides with the classical one.

Theorem 3.5. If a function f : R™ — R be twice differentiable at every point x € R™ in
the extended sense then f is twice differentiable at every point x € R™ in the classical sense.

Proof. Indeed, since f is twice differentiable at every point £ € R™ in the extended sense,
then f is differentiable at every point x € R™. It means that f is differentiable on R".
Moreover, there exist a matrix n x n A, a neighborhood U of x and subset D of U with
w(U \ D) =0 such that

(Vi) = [Vi@)]" — Al — )

lu — ]

lim

D
uU—x

=0 (6)

where p denotes the Lebesgue measure on R”. Assume without loss of generality that U is
an open convex set. Since f is Lipschitz on U, by Lemma 3.4, we have

% f(z) = co{ lim Vf(z)| xp B 2 such that lim Vf(xg) exists}, (7)
k—o0 k—o0
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We then show that

po V@)~ [Vf@)]" — A )

u—z [ — ]

=0.

Take any € > 0. By (6) there exists an open convex neighborhood V' of Z such that V- C U
and

IV = [Vf@)]" — AW —2)| <elju/ — || forall’ € DNV. (8)

Let u € V. Noting that V C U and Vf(z) € 9°' f(z), Vf(u) € 8! f(u), by (7), there exist
seN* o',/ €(0,1],z, € DNV, ul, € DNV for every i,j =1,...,s and k € N* such that

Za =1, Zﬂj—l hmxk—m hmuk—u

7=1

S

and Vf(z) = 3 afvl, Vf(u) = S v with vi = klim Vf(x};),vﬁ = klim Vf(ui) This
j— j=1 — 00 — 00

=1
together with (8) implies that

0 <[[Vi@)]" - [Viw)]" - A@ - w)
—sz%—zw%—<www

&
:HZ Z o (v, —vi = Alw = w))|

i=1j5=1
e o — vl — Ae ) | -
e | Jim (VS(a) = V() = Al = )]
Sijjgf?is}klfgo( ek — wil])
— ez —ul.

AN

Therefore, V f is differentiable at x. This means that f is twice differentiable at x. Because
r € R" is taken any, f is twice differentiable on R™. O
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TOM TAT

MOT SO KET QUA VE SU KHA VI BAC HAT
THEO NGHIA MO RONG CUA HAM SO

Ha Anh Tuan
Khoa Khoa hoc co ban, Truong Dai hoc Giao thong van tdi TP Ho Chi Minh
Ngay nhan bai 30/6/2021, ngay nhan dang 28/9/2021

Trong bai bao nay, ching t6i gi6i thiéu khai niém dao ham riéng bac hai theo nghia
md rong cho cdc ham khong 16i va chiing minh mot cong thiic tinh toan cidc phan ti cia
Hessian mé rong theo cac dao ham riéng cap hai mé rong. Ching toi cho thiy ring tong,
hiéu, tich va thuong ctia cac ham kha vi hai 1an theo nghia md rong tai ciing mot diém 1a
cac ham kha vi hai lan tai diém dé theo nghia md rong. Ching t6i ciing cho thiy vi sao
khai niem kha vi hai 1an theo nghia mé rong trén R™ khong xuat hién trong phan tich bién
phan.
T khoéa: Kha vi hai 1an theo nghia mé rong; dao ham riéng bac hai theo nghia mé
rong.
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